جدول المحتويات
تمثل كل مجموعة من المجموعات التالية أطوال أضلاع المثلث، أي مجموعة لا تنتمي إلى المجموعات الأخرى؟ الإجابة الصحيحة عن الإجابة على الأسئلة المتداولة في المثال ، الإجابة على الأسئلة المتداولة في المثال ، حيث توضح الإجابة الصحيحة ، الإجابة الصحيحة على الإجابة الصحيحة أم لا.
تمثل كل مجموعة من المجموعات التالية أطوال أضلاع المثلث
المثلث شكل هندسي بثلاثة أضلاع ، والزوايا هي إما زوايا قائمة تساوي 90 درجة ، حادة أو منفرجة ، لأن قياس الزوايا يختلف باختلاف رسم المثلث. أما بالنسبة للإجابة على السؤال المطروح ، فما هي المجموعة التي لا تنتمي إلى المجموعات الأخرى.
- والجواب الصحيح هو: 6 ، 12 ، 18.
انظر ايضا: المثلث القائم هو
ما هو المثلث
المثلث هو شكل هندسي ويتكون من ثلاثة جوانب ويحتوي على ثلاث زوايا يمكن أن تختلف في القيمة أو تكون متساوية بشرط أن تكون المجموعة الكلية للزوايا 180 درجة ، ويمكن أن يكون المثلث متساوي الأضلاع أو فرديًا أو متساوي الساقين. يمكن أن يكون أيضًا حاد الزاوية أو منفرج الزاوية أو قائم الزاوية.[1]
تمثل كل مجموعة من المجموعات التالية أطوال أضلاع المثلث ، ما هي المجموعة التي لا تنتمي إلى المجموعات الأخرى؟
حتى نتمكن من القول إن هذه المجموعة يمكن أن تشكل أطوال أضلاع المثلث ؛ يجب أن يكون مجموع أطوال الضلعين أكبر من طول الضلع الثالث. على سبيل المثال؛ إذا كانت أطوال أضلاع المثلث هي 6 ، 5 ، 2 ؛ هنا يمكننا أن نقول أن هذه مجموعة من الأرقام تمثل أطوال أضلاع المثلث ، ولكن في حالة المجموعة 6 ، 12 ، 18 ؛ مجموع أطوال الضلعين يساوي طول الضلع الثالث ؛ لذلك نجد أن هذه المجموعة لا تنتمي إلى المجموعات الأخرى.
إذن فنحن نعرف إجابة السؤال الرياضي تمثل كل مجموعة من المجموعات التالية أطوال أضلاع المثلثكما تعلمنا عن تعريف المثلث وكيف يمكن أن يشكل مجموعة خطوط الطول للمثلث.